If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-18x-26=0
a = 3; b = -18; c = -26;
Δ = b2-4ac
Δ = -182-4·3·(-26)
Δ = 636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{636}=\sqrt{4*159}=\sqrt{4}*\sqrt{159}=2\sqrt{159}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{159}}{2*3}=\frac{18-2\sqrt{159}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{159}}{2*3}=\frac{18+2\sqrt{159}}{6} $
| m+8=45 | | 5x-3+10x+18=180 | | 3(x-2)-2(x+1=5(x-4) | | h^2+5h=24 | | -0.63x+0.43x=5.2 | | 280x-280=96x-280 | | d/2+85=105 | | 6x+62=11x(x+2) | | 5w=5=0 | | Z=8x+46 | | 12y-18=78 | | 0.01=x-100/x | | 2x2-8x+54=(x-7)2 | | 4/9*(3/8*x-27/16)-3/4*x+1=1/3 | | 6x+20=-19 | | 4/9*(3/8*x-27/16)-3/3*x+1=1/3 | | -4=-6w-2 | | 5x+8+5x+14x=14x+28 | | 8(2x-10)+4=34 | | 5x-2(x-3)+9=21/5 | | 5x-2(x-3)+9=215 | | 2.1x-3.9=10.8 | | -9n+22+11n=46 | | 3n-4/10=3/5 | | 3.8x-4.7=1.9(2x-3) | | -11.3u-(18.36)=-9.5u | | H(x-4)=(x-4)(x-4)-2(x-4) | | -30=-9x-(3) | | -7x+5=-3x-50 | | 5-3+x=19 | | -11.3u-18.36=-9.5u | | J(x)=4(2)^0.75x |